Rainbow spanning subgraphs of edge-colored complete graphs

نویسندگان

  • Sogol Jahanbekam
  • Douglas B. West
چکیده

Consider edge-colorings of the complete graph Kn. Let r(n, t) be the maximum number of colors in such a coloring that does not have t edge-disjoint rainbow spanning trees. Let s(n, t) be the maximum number of colors in such a coloring having no rainbow spanning subgraph with diameter at most t. We prove r(n, t) = (n−2 2 )

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Spanning Subgraphs of Small Diameter in Edge-Colored Complete Graphs

Let s(n, t) be the maximum number of colors in an edge-coloring of the complete graph Kn that has no rainbow spanning subgraph with diameter at most t. We prove s(n, t) = (n−2 2 ) +1 for n, t ≥ 3, while s(n, 2) = (n−2 2 )

متن کامل

Colored Saturation Parameters for Rainbow Subgraphs

Inspired by a 1987 result of Hanson and Toft [Edge-colored saturated graphs, J. Graph Theory 11 (1987), 191–196] and several recent results, we consider the following saturation problem for edge-colored graphs. An edge-coloring of a graph F is rainbow if every edge of F receives a different color. Let R(F ) denote the set of rainbow-colored copies of F . A t-edge-colored graph G is (R(F ), t)-s...

متن کامل

Edge-disjoint rainbow spanning trees in complete graphs

Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges (the edgecoloring is not necessarily proper). A rainbow spanning tree is a spanning tree of G where each edge has a different color. Brualdi and Hollingsworth [4] conjectured that every properly edge-colored Kn (n ≥ 6 and even) using exactly n−1 colors has n/2 edge-disjoint rainbow spanning trees, and they proved...

متن کامل

Rainbow spanning trees in complete graphs colored by one-factorizations

Brualdi and Hollingsworth conjectured that, for even n, in a proper edge coloring of Kn using precisely n − 1 colors, the edge set can be partitioned into n2 spanning trees which are rainbow (and hence, precisely one edge from each color class is in each spanning tree). They proved that there always are two edge disjoint rainbow spanning trees. Kaneko, Kano and Suzuki improved this to three edg...

متن کامل

An f-chromatic spanning forest of edge-colored complete bipartite graphs

In 2001, Brualdi and Hollingsworth proved that an edge-colored balanced complete bipartite graph Kn,n with a color set C = {1, 2, 3, . . . , 2n − 1} has a heterochromatic spanning tree if the number of edges colored with colors in R is more than |R|/4 for any non-empty subset R ⊆ C, where a heterochromatic spanning tree is a spanning tree whose edges have distinct colors, namely, any color appe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013